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a,,,=-&$‘, Fz Mso(2yM1,~+1-~)-(~--1)(M1,‘--1)1 
MS, (2yM1,~ 4. 1 - 11) + ZM,,* r- Y - 1 

where Ml0 is the Mach number of the shock wave, Mao is the Mach number behind the wave 
front. We can show that F>O for Ml,> 1. Therefore the sign of aa,, is minus the sign 
of Rio, i.e., if the density ahead of the wave increases, the shock wave decelerates, and con- 
versely. The absolute value of the acceleration increases as the square of M,,. 

5. In conclusion we note the following. The problem of the breakup of an ordinary 
discontinuity plays an important role in numerical methods of the mechanics of continuous 
media. In particular, its solution is used to construct finite-difference schemes for the 
numerical integration of the unsteady equations of gas dynamics (so-called Godunov-type 

schemes /3/j. The result is a numerical scheme of first-order approximation, which leads to 
certain errors in numerical calculations. The analytical solution of the generalized Riemann 
problem obtained in this paper may be used to improve the order of approximation of the 

Godunov scheme if the piecewise-constant approximation is replaced by a piecewise-linear 
approximation. 
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BODIES OF FINITE THICKNESS AT 

THE APPROACH STREAM* 

Supersonic planar flow round a symmetric tapered body is considered for 
which, at each point, the angle of inclination of the wall is less than 
the limiting angle for the shock polar corresponding to the approach 
stream. It is shown that states of flow with the formation of both an 
attached shock wave (SW) of the strong family and a detached SW with 
subsequent subsonic flow between the shock wave, the body and the sonic 
line are impossible at any stream velocities. In essence, the results 
obtained by Nikol'skii /l/ are transferred to the case of an arbitrary 
Mach number of the approach stream. 

The impossibility of flow round a finite wedge with the formation of an attached SW of 
the strong family has been proved when substantial simplifying assumptions are made in /2/. 
The problem has been considered in /l/ in a general formulation under the sole assumption 
that there are no local supersonic zones and closed stream lines in the subsonic flow domain 
between the SW, the body and the sonic line. 

In this paper, the proof is based on a monotonic change in the angle of inclination of 
the velocity vector along lines of constant pressure (isobars). This fact, which is valid in 
the case of-vortex flowsl has been established previously in /l/ and the analogous result for 
?'PrikZ.Matem.Mekhan.,55,1,95-99,1991 



vortex-free flows /3/ preceded it. As a result, it was shown in /l/ that, at Mach numbers 

of the approach stream M,< 1.7 (the adiabatic index x = 1.4), states of flow round tapered 
bodies with an attached SW of the strong family and with a detached SW are impossible and, at 
the same time, it was pointed out that, when M,>f.7, a combined analysis of the subsonic 
and supersonic flow domains is required. It is possible that this constraint on M, and, this 
means, also on the limiting angle of inclination of the wall, served as one of the reasons 
why this interesting result was not echoed in subsequent publications. For instance, in the 
well known handbooks /4-S/, the question of thepossibility orimpossibility of the formation 
of an attached SW of the strong family during the flow round tapered bodies of finite thickness 
is barely discussed at all and it is merely noted that the SW of the weak family is realized 
experimentally. 

In this paper use is made of a fundamental element in the proof in /l/ which is based on 
an analysis of an isobar emerging from a corresponding point of the SW, with the refinement 
of certain details. However, another estimate of the pressure on the sonic line is used 
rather than that in /l/. As a result, the basic derivations are now independent of the Mach 
number of the approach stream. 

Let us consider the planar symmetric flow round a tapered body of finite thickness by a 
uniform horizontal supersonic flow of an ideal (non-viscous and non-thermally conducting) gas 
with a Mach number M, and an adiabatic index x. The upper half Oh of the body being con- 
sidered is shown in Fig.1. The shock polar corresponding to the approach stream is shown in 
Fig.2. Here and subsequently, we adopt the following notation: M is the Mach number, q and 
8 are the modulus and angle of inclination of the velocity vector and p,p, and s are 
the pressure, density and entropy. 

The shock polar is symmetrical about the e=o axis. The points c and c- correspond 
to the value IV = 1 while points located above (below) the points c and c- correspond to 
values of M< 1 (M >I). At the point k (k-), the angle 
(minimum) value ok (-0,). It is well-known that 

0 reaches its limiting maximum 
M<1 at the points k and k- in the 

case of polytropic gases. 

k 

n 
n h 

d 0 X 
Fig.1 Fig.2 

We recall that, in the case of an infinite wedge with a taper angle l&8,(8, (Fig.2). 
theory admits of two states of flow with attached shock waves corresponding to the weak(p =pJ 
and strong (p =pz) families where Pl-== Plr < Pa. Correspondingly, different states of flow 
might also be expected in the case of a body of finite thickness depending on its geometry. 

The following proposed states of flow round a tapered body Oh (Fig.1) will be considered 
next. 

State 1. Flow with an attached SW 0s which corresponds, 
the strong family. 

at the point of tapering, to 
Here, M<1 at all points of the domain Oat. 

State 2. Flow with a detached SW dz. Here, M< i at all points of the domain dOac. 
The necessary existence of the sonic lines ac is associated with the fact that, upon 

the unbounded removal of the SW from the body, Oz and dz degenerate into characteristics. 
Consequently, there are sonic points c on 0s 
either reach the body at point a 

and dz from which sonic lines emerge which 
or which depart to the right along the horizontal wall of 

the body to infinity. The latter can only take place in the case of a detached SW for a 
narrow range of initial parameters, M, and x /9/. In this case, it is sufficient to 
presume that point a in Fig.1 is displaced to the right to inifinity and that 
the whole of the wall. 

M< 1 along 
It is found that, on account of the occurrence of the above-mentioned 

sonic lines, the problem of the flow round bodies of finite thickness can be fundamentally 
different from the problem of the flow round an infinite wedge. 

It follows from the assumptions which have been made that there are no breaks on the 
segments OC and dc and all the parameters, including the entropy s, vary continuously along 
them, but not necessarily in a monotonic manner. In the regions of subsonic flows, 
and dOac, not only p and 8 are continuous but also s, 

Oat 
and this means hf,q and p also. 
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The investigation of subsonic non-isentropic flows in the regions Oat and dOac was 
based on an analysis of the isobars /l/. For instance, by using the equations of the gas 
dynamics of planar vortex flows in the form 

PN = --pq%L, (M' - I)& = -f@~N 

the following expression was obtained for the derivative calculated along an isobar: 

I$ = -p,, (1 - Ma sin* fi) / (pq*) (1) 

where PL, b? PN, and ON are derivatives calculated along the streamlines and along the 
normal to a streamline, pn is a derivative calculated with respect to the normal to an isobar 
and p is the angle between the velocity vector and an isobar. 

The following conclusion was drawn on the basis of (11. 
If the reduced pressure domain remains to the left (p,<O), as one moves along an isobar 

in a planar subsonic vortex flow, then the velocity vector rotates monotonically (possibly 
not strictly monotonically) in an anticlockwise direction in the case of such motion. 

Using this property of isobars, it has been shown /l/ that the proposed states of flow 
are impossible when Mm< 1.7. 

For greater justification and effectiveness in the use of the above-mentioned properties 
of isobars when analysing the subsonic flows behind SW's, we shall prove the following 
assertions in addition to /l/. 

Assertion 1. In the subsonic domain behind a shock wave into which a homogeneous 
horizontal supersonic flow is incident from the left, the pressure cannot reach its local 
extremum at points in the shock wave with the exception of the points at which the two con- 
ditions: fl = 0, 8, < 0 are simultaneously satisfied. The second condition means that, 
behind the shock wave, the flow filament is constricted and the current in it is speeded up, 
Such a situation can occur, for example, beyond a point of irregular reflection of a shock 
wave from a plane of symmetry. 

In fact, if the pressure in the subsonic domain behind the shock wave has a local ex- 
tremum at a certain point t of the shock wave, then, in this case, isobars, which begin and 

terminate in the shock wave, must exist in a small neighbourhood of the point t and encompass 
t. However, by virtue of the properties which have been mentioned above, this is only 
possible when 8 = 0, 8,<0 and, as a consequence of this, it is only in such a case that an 
isobar does not reach from point t into the subsonic region. In all the remaining cases the 
isobars reach from points in the shock wave into the subsonic domain. Use will later be made 
of this fact. 

Assertion 2. In the states of flow which are being considered, the maximum pressure on 
the sonic lines UC is equal to the pressure PC at the sonic point c of the shock polar. 

Actually, an entropy minimum is reached on segments Oc and dc when M = 1, that is, at 
the points c. Consequently, a minimum in the entropy is also reached on .ac at the same 

points. By allowing for the fact that p = p. (s)f(M,x), where PO (4 and f (M,%)are known 
functions, and that PO(S) increases as S decreases, we obtain that P<pPe on UC, which it 
was required to prove. 

Assertions 1 and 2 provide additional information regarding the extremal properties of 
subsonic vortex flows. We also recall /l/ that the pressure p cannot attain a local extremum 
at internal points of the domain of subsonic flow. Points which are encompassed by closed 
isobars, where the angle 0 varies by 2n when they are passed around, are an exception to 
this. The latter occurs during the collision of streams from a common stagnation point and 
in the case of closed streamlines /8/. 

We shall make use of Assertions 1 and 2 in the proof of the following theorem. 

Theorem. The proposed states of flow round a tapered body which have been formulated 
above subject to the condition that e<Uek on the subsonic segment of the wall and 8 = f&( 

Sk at the point of tapering are impossible at any supersonic velocities of theapproach stream. 

Proof. BY virtue of the continuity of the gas-dynamic parameters along the segments Oc 
and dc, points must exist on them at which 0 reaches the maximum value of Ur for the shock 
polar. We shall also denote these points in a shock wave by the index k (if there are several 
such points, the index k refers to those closest to the points c). Following /l/, let us consider 
isobars which emerge from these points into the subsonic regions Oat 
of such isobars follows from Assertion 1. 

and doczc. The existence 

possible in subsonic flows. 
It is well-known /5/ that branching points are 

When there are such points, we choose the outer left branches for 
the continuation of the isobars investigated (here and subsequently, the motion occurs from 
the point k) . 

With such a construction of the isobars, Pn < 0 and here Pn only vanishes at the above- 
mentioned branching points. Consequently, when M< 1, 8, >O along the isobars investi- 
gated by virtue of (l), and e> t% at all points of the isobars other than k. The isobars 
which have emanated from the points k cannot suddenly terminate within the subsonic domains 



and they must reach some points on the boundaries of these domains. It follows from 

Assertion 2 and from the form of the shock polar that p<&<,<Pk on the Sonic lines and, 

consequently, the isobars investigated cannot reach the sonic lines QC. However, since 

9 > e$ on these isobars, they cannot reach the shock wave OC and de, the wall 0~ and also 
the interval d0 of the plane of symmetry. The resulting contradiction thereby proves the 
theorem. 

Remark lo. In /l/, the pressure p on the sonic lines was estimated from above by the 
quantity P* which is equal to the pressure obtained after the isentropic retardation of the 
approach stream to M=i. It has been shown /I./ that, for x= 1.4 when M< 1.7. we have 

Pti > P.3 on the basis of which the conclusion was drawn regarding the impossibility of the 
above-mentioned states of flow when M,<t.7. 

2". In proving the theorem, the exotic situation was omitted in which the angle 0 along 
the isobars investigated increases by a significant amount P<2x and, at the same time, 
generally speaking, it is possible that an isobar reaches the shock wave, the wall or the 
plane of symmetry. Without going into detail, we merely note that the lines 6= 0* = const(&< 
89 <Zn) which have issued from points of such isobars cannot again reach these isobars and 
cannot reach the shock wave, the wall of the body and the plane of symmetry. Only their 
intersection at a certain point t of the subsonic region is possible and, here, the point t 
must be encompassed by closed isobars where, when they are traversed completely, the angle 9 
changes by 2n. As has already been mentioned above, the pressure p at such a point t must 
reach its local extremum. In connection with the problem under consideration, only a flow 
with closed streamlines as, for example, in the case of leading detached zone, is possible 
in the neighbourhood of the point t. 

3". The theorem does not extend to the case when an attached shock wave of the weak 
subsonic family, which corresponds to the points of the arc ck of the shock polar which also 
includes the case when Bo=Ok, is realized at the point of tapering. 

Actually, the occurrence of points at which the value of tt is not less than the 
maximum value of (3 on the subsonic segment of the wall is not guaranteed in this case on the 
segment Oc to the xight of point 0. In its turn, the absence of such points does not enable 
us to arrive at a contradiction in the analysis of isobars on which the proof of the theorem 
was based. 

40. If 6=Bo< 9k at the point of tapering but values 
of 6>Bk are possible on the subsonic segment of the 
wall, then the theorem is invalid in this case, which can 

2 

& 

be seen from the proof of the theorem. Consequently, 

C 
states of flow with a detached shock wave and with an 
attached shock wave, 

k I 
corresponding to the strong subsonic 

family, are possible in this case regardless of the shape 
n h of the body. Corresponding examples of flow with a 

j a 
detached shock wave are well-known /7/ and we shall 

m i therefore dwell in greater detail on an example of a flow 

d 0 
with an attached shock wave of the strong subsonic family. 

Fig.3 
Let us consider the flow of the blunt body, Oah, in 

Fig.3. here, dcz is the detached shock wave, cc is the 
sonic line, k is a point at which 13= ok and ki are 
isobars. Then, as the upper half of the required tapered 
body, one may take any streamline, nmz, which reaches the 
shock wave from the interval dk. It is obvious that the 
shock wave in the neiqhbourhood of point m belongs to the 

strong subsonic family. Next, M<i in the domain mnc and M- 1 on 12~ and 6>% at 
point j. In other words, the fact that the Uach number and the angle of inclination of the 
wall simultaneously increase along the initial part of its wall is a characteristic feature 
of the body which has been constructed, 

5Q. If the gas being considered is not polytropic, the theorem remains valid when 
Assertion 2 is satisfied. If, at the same time, the sonic point e of the shock polar is 
located above the point k, then 9k has to replace by es in the condition appertaining to 
the theorem. 

The author thanks A-N. Kraiko, Yu.B. Lifshitz and V.V. Sychev for useful discussions 
and advice. 
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NON-STATIONARY PROBLEM OF A PLANE HYDRAULIC FAULT CRACK 

IN A FLUID-SATURATED STRATUM* 

YU.N. GORDEYEV 

The problem of a vertical hydraulic fault crack /l/ in a 
fluid-saturated stratum wedged out by a viscous filtering fluid flow is 
considered. It is assumed that the state of stress and strain of the 
stratum is described by a system of Biot equations /2/. A system of 
elastic constant notation, proposed in /3/, is used. 

The non-stationary problem of a vertical hydraulic fault crack in a fluid-saturated 
stratum in one special case of representing the general solution of the consolidation theory 
equations reduces to the solution of an equation of piezoconductivity type with a source and 
a formula connecting displacement of the crack edges with the fault fluid pressure and the 
fluid leakage velocity through the crack walls. In the case of a fixed "ideal" crack, along 
which the pressure is constant, the problem of a hydraulic fault reduces to solving a 
one-dimensional singular integral equation for the Laplace transform. Asymptotic forms of the 
solution of this equation are found for long and short times. Representation of the general 
solution of the consolidation theory equations in the Papkovich-Neuber form was obtained to 
solve consolidation theory problem /4, 5/. Compressibility effects of the interstitial fluid 
/6/ were taken into account in the development of this method. A representation of the 
general solution of the consolidation theory equations in terms of two analytic functions of 
a complex variable /3/ was obtained in another approach to the solution of plane problems. 
Application of consolidation theory to the investigation of stationary problems of a hydraulic 
fault of a fluid-saturated stratum was started in /7, 8/. 

I. Formulation of the problem. Let a plane crack in an infinite porous fluid-saturated 
space in a homogeneous compressive stress field u,, be maintained in an open state by fluid 
heated within the crack, which can filter through its wall into a porous medium while moving 
along the crack. It is assumed that the borehole radius r0 can be less than the crack length 
L, and, consequently, effects associated with the presence of the borehole can be neglected. 

In particular, this crack theory problem occurs in connection with the problem of a 
hydraulic fault in an oil-bearing stratum /l/. 

A coupled theory of consolidation /3/ (i,jv k = 1,2,3, and summation is over repeated 
subscripts) is used to describe the strain of a fluid-saturated porous medium and the 
filtration of the interstitial fluid therein: 

daijh3xj = 0, uLj = oji (1.1) 
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